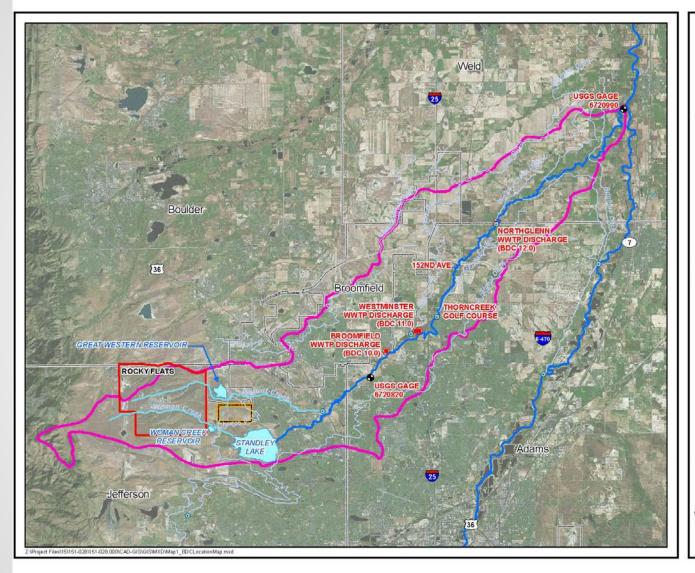
Full Spectrum Detention and Water Rights

Ken MacKenzie, P.E., UDFCD, Master Planning Program Manager &

Dr. Andrew Earles, P.E. and Adam Kremers, P.E., Wright Water Engineers, Inc.

April 5, 2016

Overview of Presentation


- Objectives and Approach
- SWMM Water Balance Modeling
- Water Rights Analysis
- Conclusions

Colorado Revised Statute (CRS) §37-92-602 (8)

- UDFCD legislative effort in 2015 session
- Provides legal protection for stormwater detention and infiltration facilities meeting criteria:
 - 1. Owned or operated by a governmental entity or subject to oversight by governmental entity (e.g., required under MS4 permit)
 - Continuously releases or infiltrates at least 97% of all runoff from a rainfall event < = 5-year storm within 72 hours after the end of the event
 - 3. Continuously releases or infiltrates as quickly as practicable, but in all cases releases or infiltrates at least 99% of the runoff within 120 hours after the end of events > = 5-year storm
 - 4. It operates passively and does not subject the stormwater runoff to any active treatment process
 - 5. If located in Fountain Creek watershed (tributary to the Arkansas River), facility must be required by or operated in compliance with MS4 permit

Objectives

- Conduct long-term water balance analysis to quantify changes to the quantity and timing of water available to water rights users.
- Quantification of water balance differences between undeveloped, developed, and developed with FSD.
- Evaluation of changes in balance (evaporation, ET, infiltration, surface runoff) for varying levels of imperviousness.
- Examine effects of timing of runoff/releases from FSD facilities.
- Evaluate effects on downstream water users.

MAP 1

BIG DRY CREEK WATERSHED

LOCATION MAP

Legend

- USGS Gages
- Diversion Structures
- Wastewater Discharges

Lakes/Reservoirs

---- Big Dry Creek

SPR

FSD Watershed (1 sq mi)

Big Dry Creek Watershed

County Boundary

0 1 2 4

WWE

WRIGHT WATER ENGINEERS, INC. 2490 W 26TH AVE 100A DENVER, CO. 80211 (303) 480-1700

Approach

- Combine hydrology model (SWMM) with water rights model (spreadsheet)
- Model "typical" developments scenarios for hypothetical watershed (range of imperviousness)
- UDFCD spreadsheets for conceptual FSD sizing
- Water Rights model to assess downstream effects of SWMM scenarios

Watershed Parameters

- 1-square mile "typical" watershed
- Imperviousness 2%, 20%, 35%, 50%, 65%, 80%
- Sub-basin parameters from 2006 Big Dry Creek Northern Tributaries OSP
- Horton infiltration using parameters from USDCM

Climate Data

- Hourly Precipitation
- Daily Min and Max Temperatures
- Wind Speed
- Evaporation/ET calculated by model

Aquifer Parameters

- Porosity
- Field Capacity
- Wilting Point
- Upper/ lower zone water availability for ET

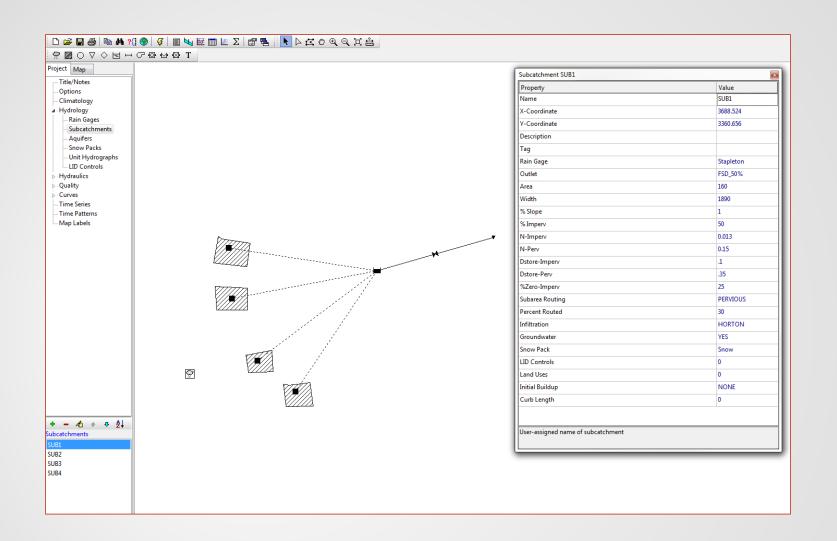
Daily Time Series Output from SWMM

SWMM

- Outflow
- Evaporation/ET
- Storage

Water Rights Accounting

- Streamflow
- Diversion Records
- Return Flows
- Calls



Water Rights Spreadsheet

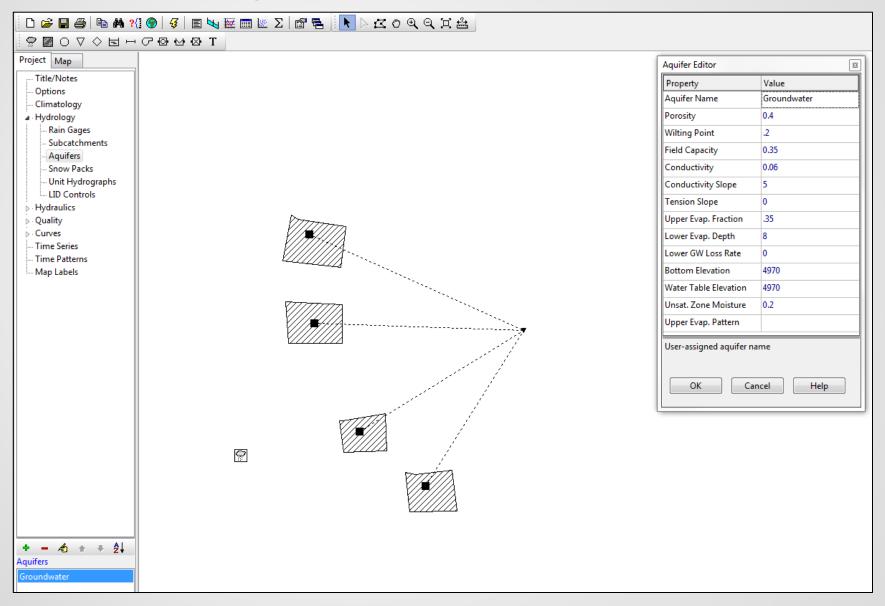
Output from Water Rights Spreadsheet

Water shortage or water surplus

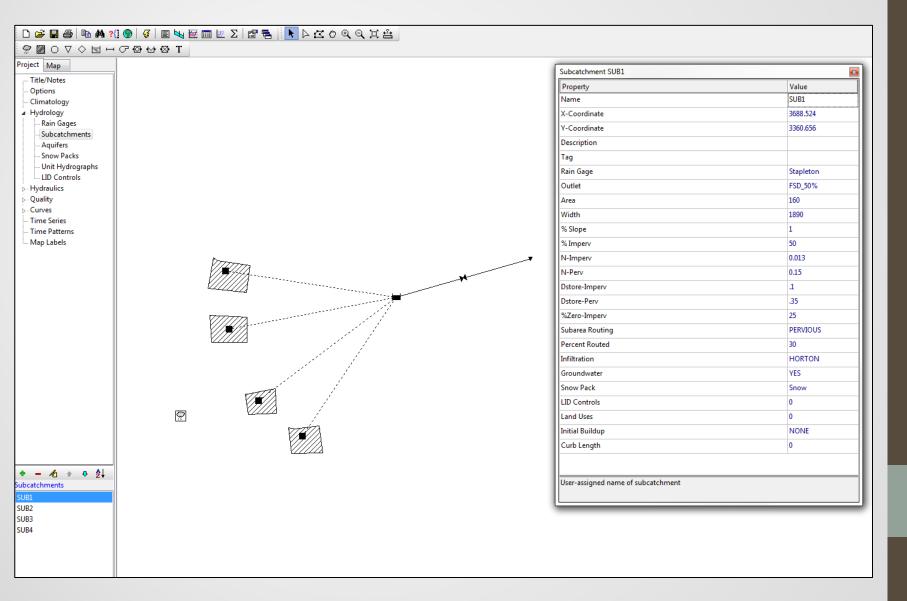
SWMM WATER BALANCE MODELS

Fundamental Model Assumptions

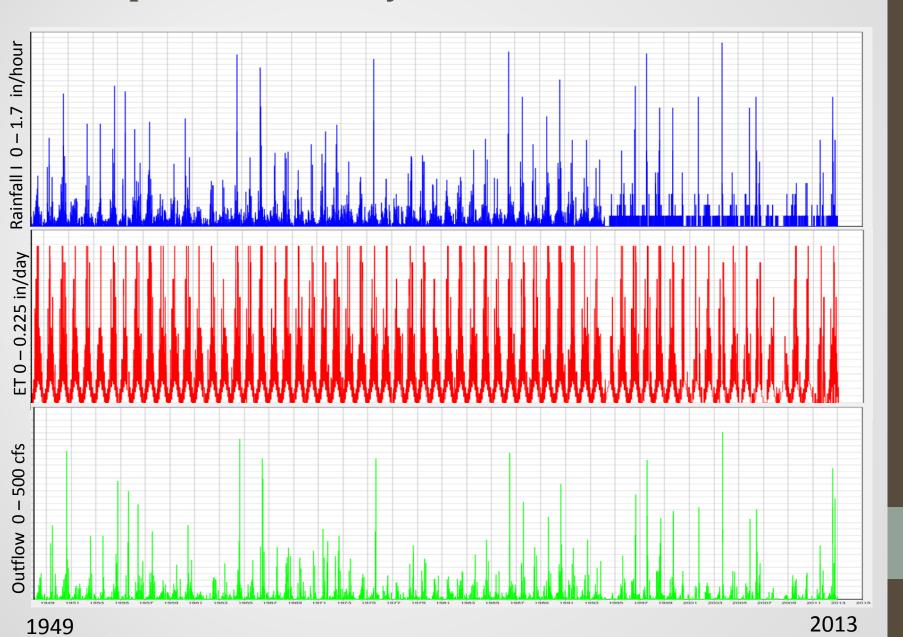
- One square mile watershed (major drainage scale, typical of large scale development projects)
 - Use Big Dry Creek Northern Tributaries OSP as starting point for "typical" model parameterization
 - 160 acre sub-basins (similar to UDFCD master plan modeling)
 - Assume directly tributary to waterway
- Imperviousness varied from undeveloped (2%) to dense development (80%)
- Climate data (hourly rainfall, temperature, wind speed, etc.) from NOAA GHCN-D climate data files


Fundamental Model Assumptions (cont.)

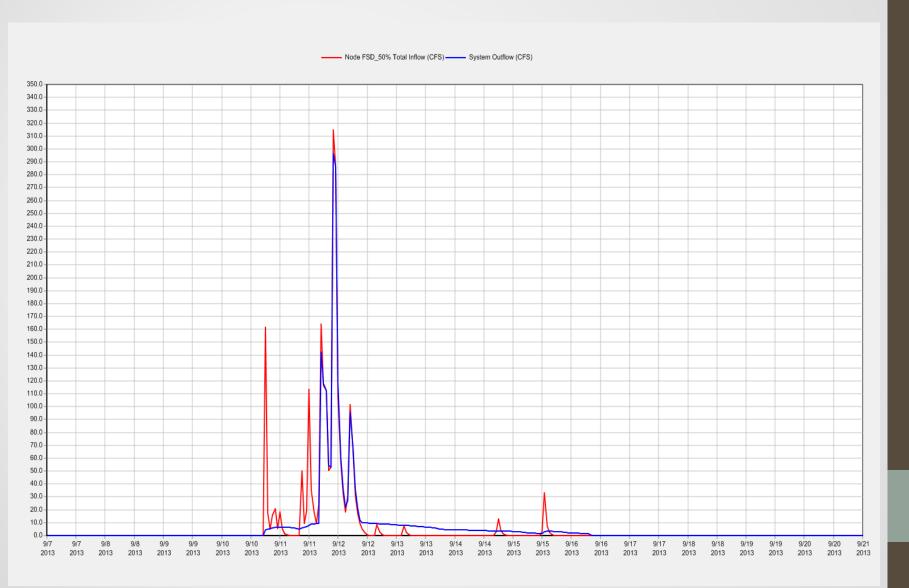
- Horton Loss parameters (guidance from USDCM), assume HSG
 C.
- Evaporation occurs from surface water (e.g. depression storage, runoff).
- Shallow aquifer beneath site fraction of water in upper soil zone is available for ET between events:
 - Aquifer is "bucket" and change in aquifer storage represents shallow (tributary) groundwater recharge or depletion
 - Aquifer ET parameters "calibrated" for undeveloped scenario to yield results where ET ~ PET for native plants, with infrequent runoff.
- Snowmelt incorporated for runoff timing effects not a sensitive parameter.


Fundamental Model Assumptions (cont.)

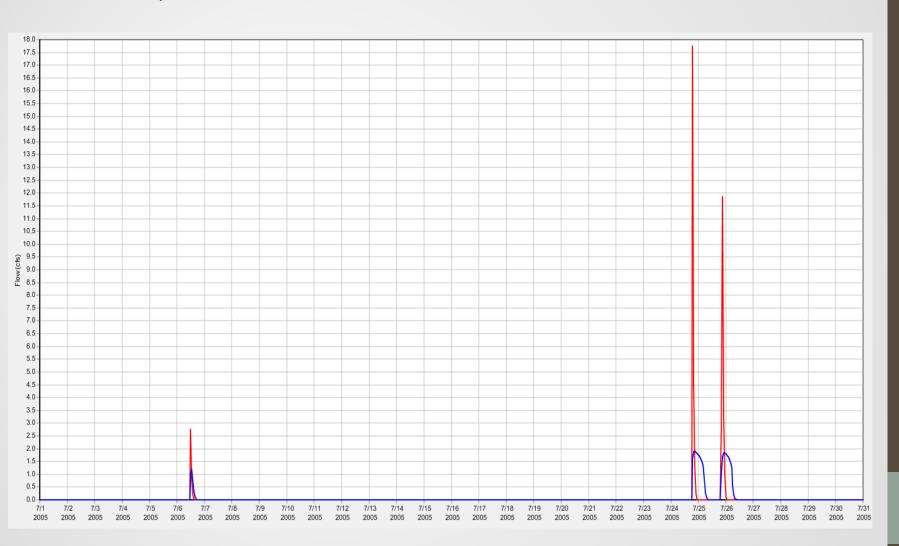
- Assumes dry land/native land use prior to development.
- Additional irrigation water not accounted for in model:
 - Model provides capabilities to evaluate alternate scenarios, including return flows from irrigated land; however, scope of this assessment did not include irrigation.
- Results from 1 square mile are scalable to larger areas.

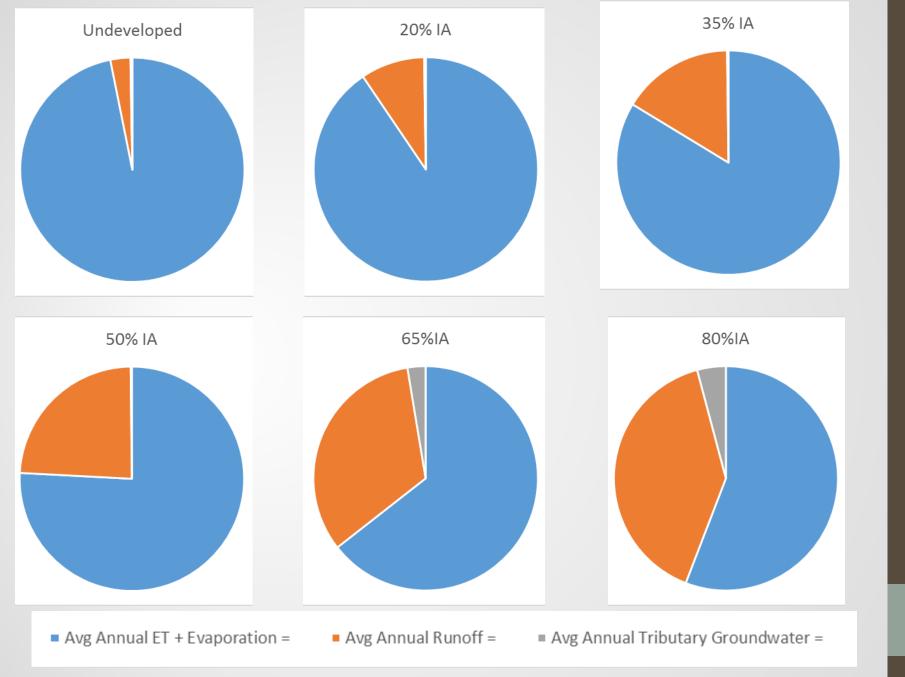

SWMM Layout for Model with No FSD

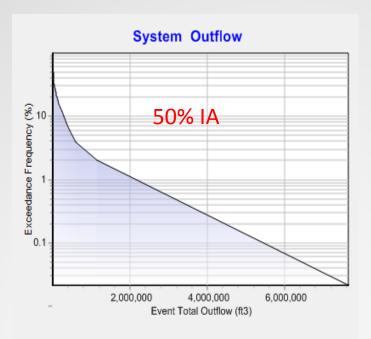
SWMM Model Layout with FSD

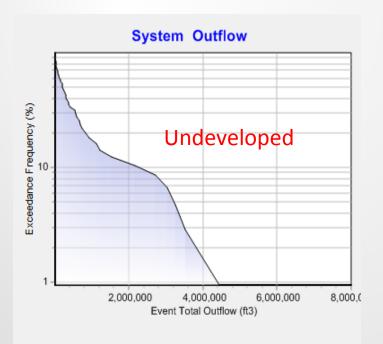


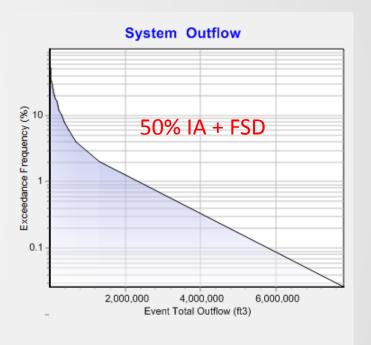
Precipitation, ET & System Outflow, 1949 - 2013

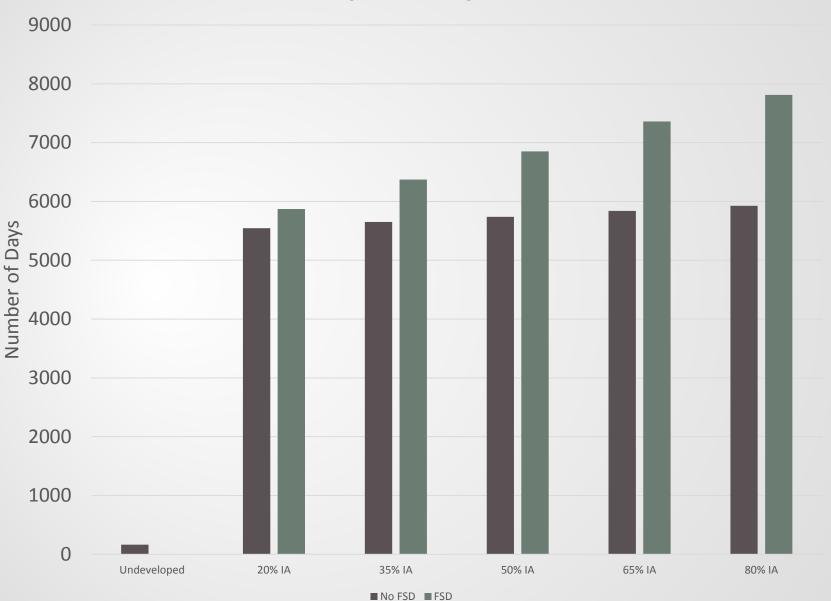


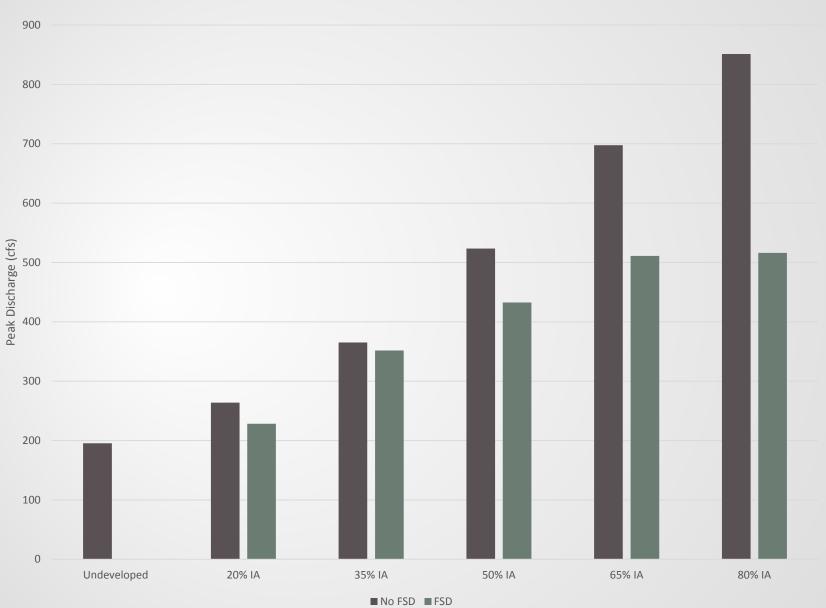

14


FSD Inflow and Outflow September 2013, 50% IA




Modeled FSD Inflow and Outflow, July 2005, 50% IA





Number of Days with System Outflow

Peak Outflow Rates with and without FSD

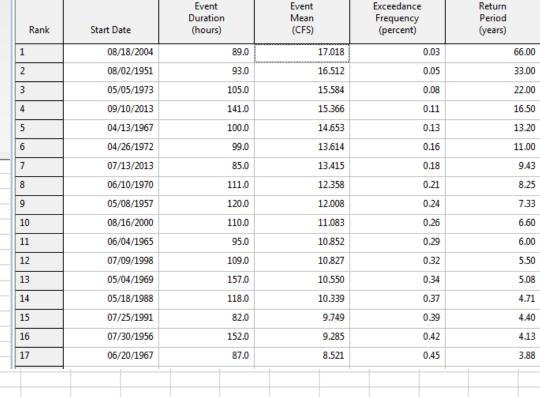
Results - Precipitation & Outflow

Precipitation Precipitation											
Variables	Undev	20% IA	20% IA+ FSD	35% IA	35% IA + FSD	50% IA	50% IA+ FSD	65% IA	65% IA+ FSD	80% IA	80% IA+ FSD
Number of Events	4931	4931	4931	4931	4931	4931	4931	4931	4931	4931	4931
Mean Daily Precip (in)	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
Max Daily Precip (in)	3.39	3.39	3.39	3.39	3.39	3.39	3.39	3.39	3.39	3.39	3.39

System	Outflow
--------	---------

Variables	Undev	20% IA	20% IA+ FSD	35% IA	35% IA + FSD	50% IA	50% IA + FSD	65% IA	65% IA + FSD	80% IA	80% IA + FSD
Number of Events	163	5545	5871	5652	6372	5738	6852	5838	7361	5927	7812
Mean Daily Outflow (cfs)	12.2	1.3	0.6	2.1	0.9	3.0	1.2	3.9	1.4	4.4	1.7
Peak Daily Outflow (cfs)	196	264	228	365	352	523	433	697	511	851	516
Mean Daily Outflow (ac-ft)	8.9	0.9	0.7	1.5	1.2	2.2	1.7	2.9	2.2	3.5	2.6
Max Daily Outflow (ac-ft)	77	94	72	113	96	129	102	144	125	158	133

Results - Evaporation/ET and Storage


Evaporation											
Variables	Undev	20% IA	20% IA+ FSD	35% IA	35% IA+ FSD	50% IA	50% IA+ FSD	65% IA	65% IA + FSD	80% IA	80% IA+ FSD
Number of Events	20689	22032	22833	22443	22443	23529	23529	23707	23707	23707	23707
Daily Mean Evap (in)	0.043	0.036	0.036	0.042	0.042	0.038	0.038	0.038	0.038	0.039	0.039
Peak Daily Evap (in)	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228

Storage Storage											
Variables	Undev	20% IA	20% IA+ FSD	35% IA	35% IA + FSD	50% IA	50% IA + FSD	65% IA	65% IA + FSD	80% IA	80% IA + FSD
Number of Events	0	0	6080	0	6569	0	7044	0	7858	0	7972
Daily Mean Storage (ac-ft)	0	0.0	0.2	0.0	0.6	0.0	1.1	0.0	1.4	0.0	1.9
Daily Peak Storage (ac-ft)	0	0	12	0	23	0	35	0	47	0	59

System Outflow Histogram & Data

56

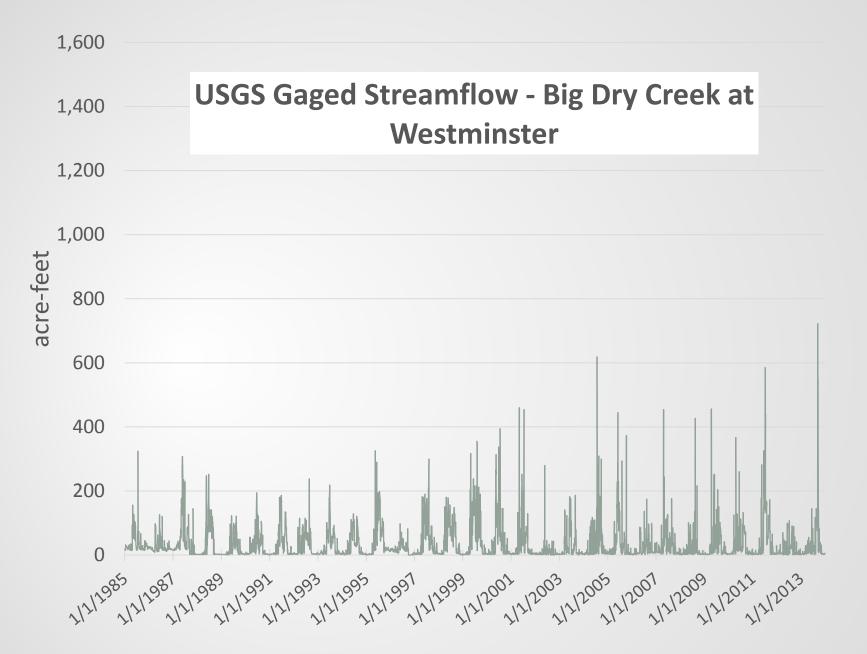
54

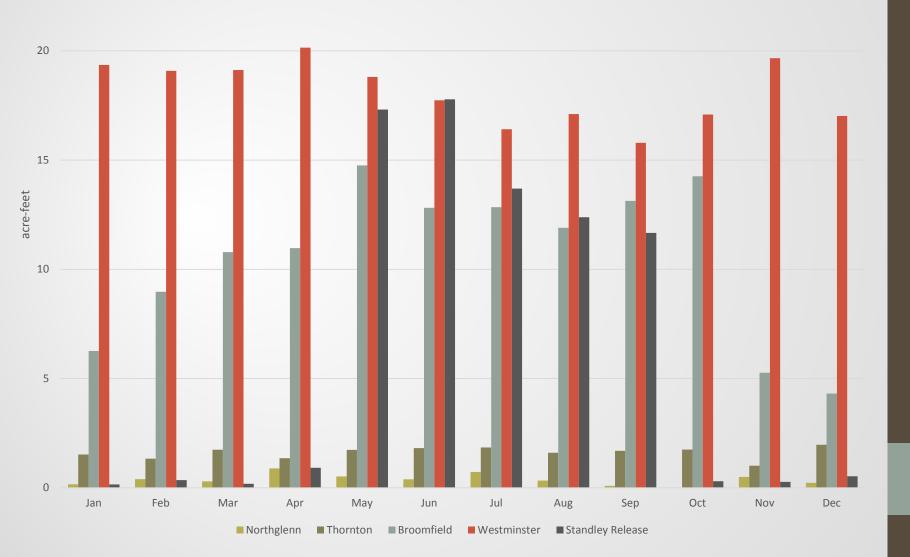
 \sum Statistics - System Outflow

Events Histogram Frequency Plot

WATER RIGHTS ANALYSIS

Objectives

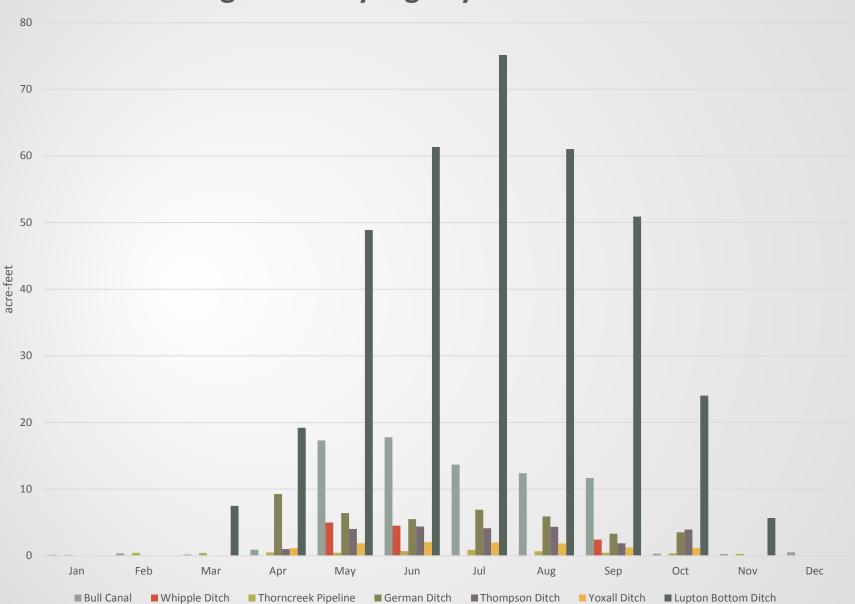

- There's more water, but is there really?
 - Colorado's water landscape depends on snowpack, runoff and return flows for a healthy watershed.
- Big Dry Creek flows support South Platte River diversions
- Historical river calls impact on Big Dry Creek
- Water rights holders and Big Dry Creek diversions
- Who benefits from FSD as a result of recent legislation?

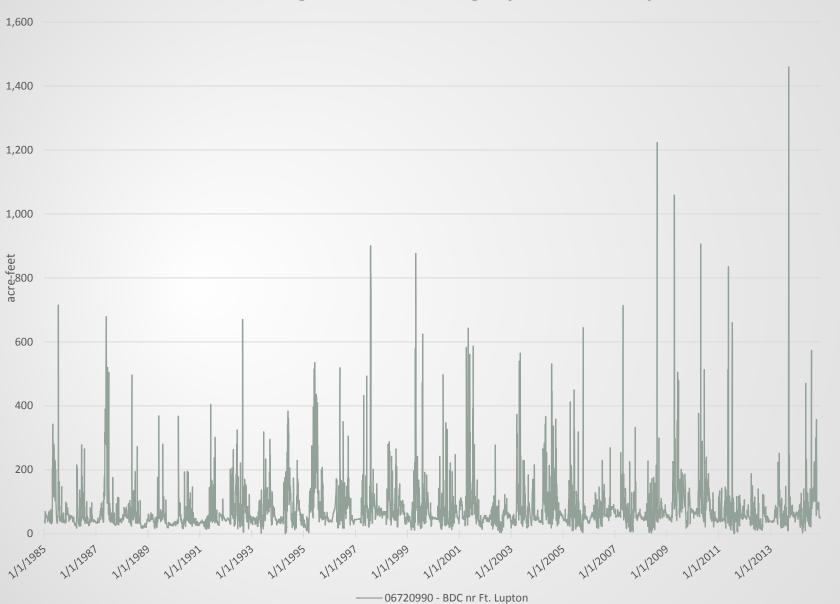

Where is the Water on Big Dry Creek?

- USGS & DWR stream gages in Westminster and Ft. Lupton.
 - Gaining reach due to non-native flows.
- Transbasin diversions, reservoir releases and municipal waste water treatment effluent.
- No river calls on Big Dry Creek.
- Big Dry Creek serves as a conduit for augmentation deliveries and releases made to the South Platte.
- Big Dry Creek diversion structures divert both native and nonnative flows.

Where is the Water on Big Dry Creek?

- Colorado's Decision Support System
 - State supported and publicly available data for Colorado's climate, streamflow and diversion records
 - Water rights related transactions and net decreed amounts relative to the Big Dry Creek system
- Colorado's Division of Water Resources
 - Call chronology of Colorado's river basins
 - South Platte River Basin's Division 1 office for municipalities accounting submittals
- Outflow from full spectrum detention and runoff as a result of development in the Big Dry Creek basin
- Evapotranspiration from rainfall events
- Lagged groundwater returns to Big Dry Creek and the South Platte River

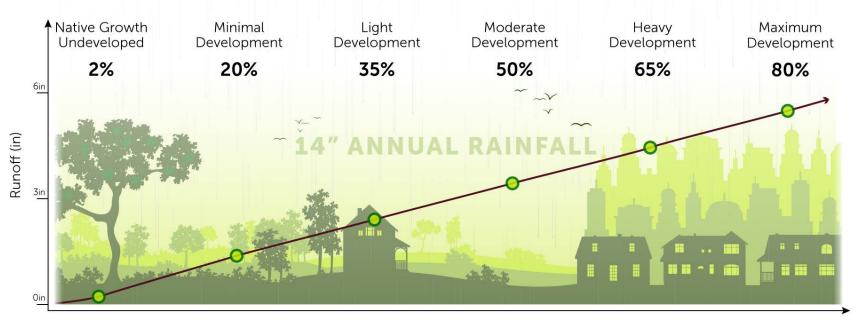



Water Rights on Big Dry Creek

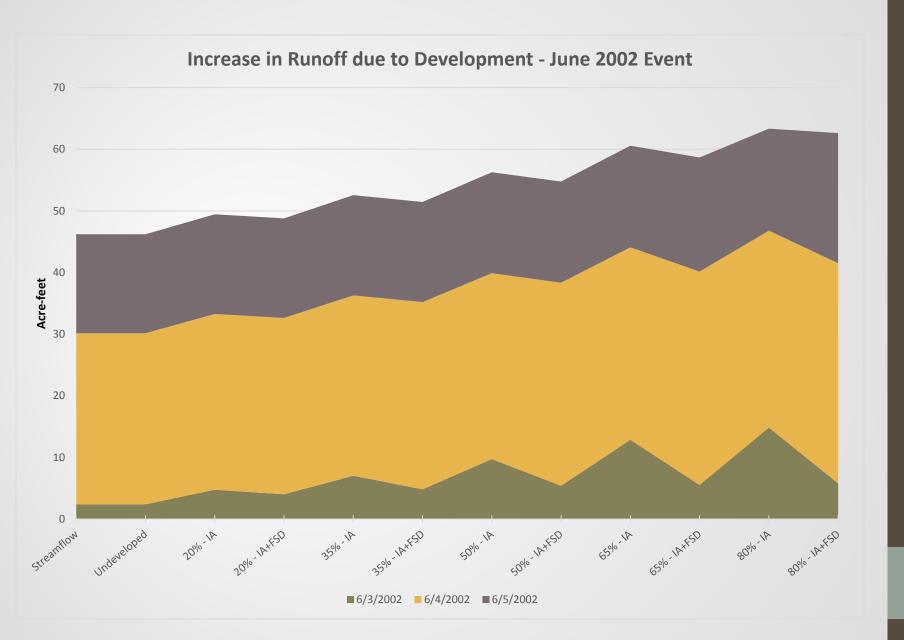
			Decreed Amount (cfs)					
Structure ID	Water Right Name	Appropriation Date	Administration No.	Case No	Decreed Use	Absolute	Conditional	Alternate Point
872	German Ditch	1885-11-30	13118.00000	CA8568	Irrigation	0.99		
871	Bull Canal (Whipple Ditch)	1885-12-31	13149.00000	CA8568	Irrigation	0.99		
871	Bull Canal (Whipple Ditch)	1884-09-01	15895.12663	CA54658	Irrigation	5		
872	German Ditch	1885-11-25	15895.13113	01CW0273	Irrigation	40		
873	Big Dry Creek Ditch	1889-12-15	15895.14594	CA54658	Irrigation	36.66		
874	Yoxall Ditch	1896-07-27	17010.00000	CA40750	Irrigation	16.8		
880	Thornton Golf Course Pipeline	1987-12-10	50382.00000	96CW0244	Irrigation, Recreation, Other Beneficial Uses	5		140
880	Thornton Golf Course Pipeline	1996-12-31	53691.00000	96CW1116	Municipal			130
871	Bull Canal (Whipple Ditch)	2004-11-15	56567.00000	04CW0310	Municipal		31	
871	Bull Canal (Whipple Ditch)	2004-12-20	56602.00000	04CW0310	Municipal			21

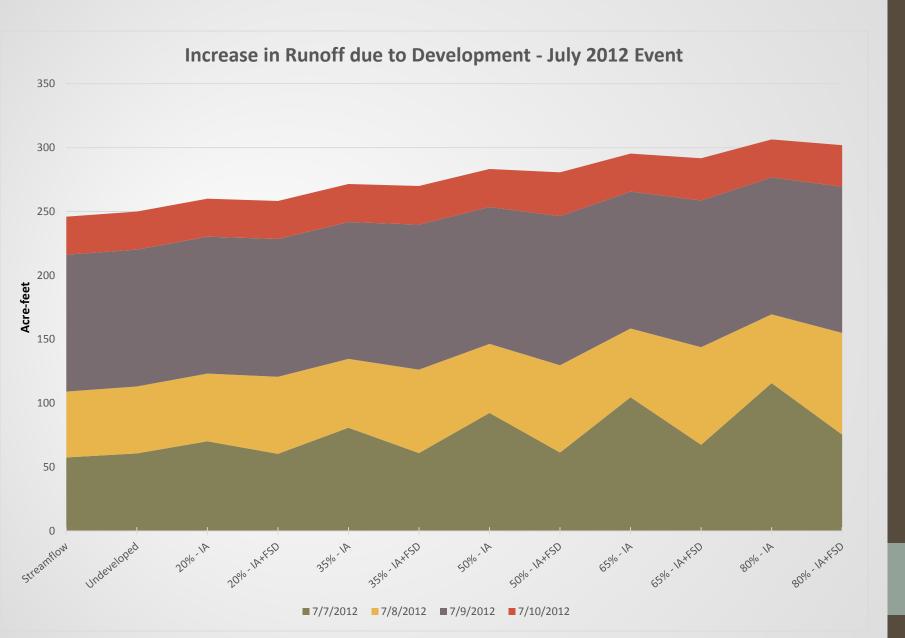
Average Monthly Big Dry Creek Diversions

USGS Gaged Streamflow - Big Dry Creek at Ft. Lupton

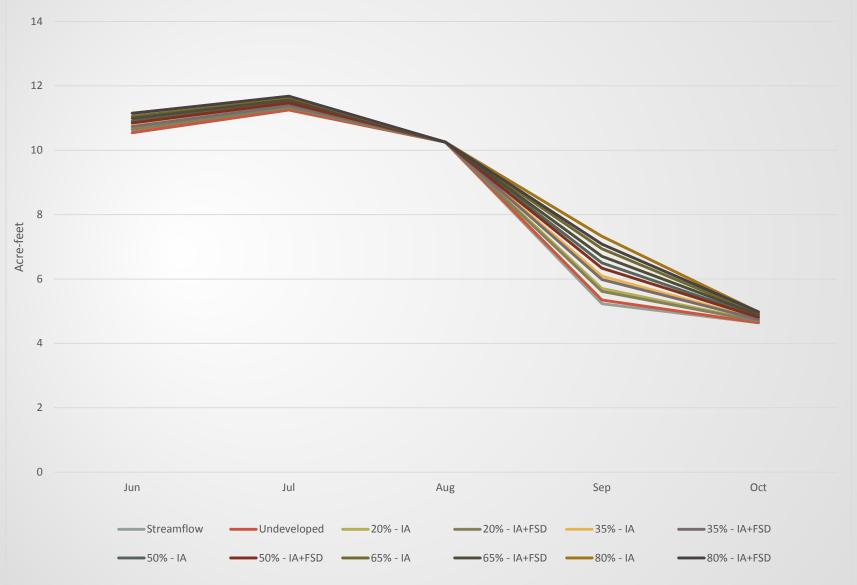

Return Flow and ET

- Colorado water rights holders depend on subsurface flows as a result of rainfall, reservoir seepage and irrigation use.
 - Farm irrigation is large contributor to groundwater return flows.
 - Undeveloped scenario losses are a result of evapotranspiration.
- Development removes the lagged component of native ET from the system.
 - Long-term ET is re-timed through FSD and available to water rights holders in greater and more immediate quantities.
 - The lagged component returning to the stream is de minimis relative to an undeveloped area.


Effects of FSD

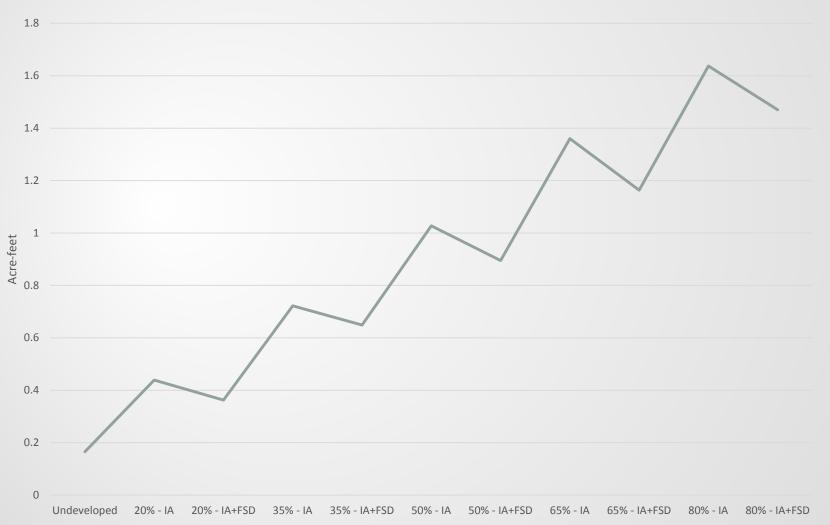

- Colorado water rights holders
 - Municipalities
 - Augmentation Plans
- Peak flow from rainfall events increase physical flow in subsequent days
- Big Dry Creek and South Platte River water rights may divert more water

Runoff due to Various Densities of Development



Development Density

Increase in 2002 Irrigation Season Streamflow as a Result of Development


Runoff during South Platte River Calls as a Result of Development

Units in acre-feet

	Admin # Cal	II Structure	Days	Percent	Undeveloped	20% - IA	20% - IA+FSD	35% - IA	35% - IA+FSD	50% - IA	50% - IA+FSD	65% - IA	65% - IA+FSD	80% - IA	80% - IA+FSD
	No Call		13,883	60%	728	2,553	2,380	4,512	4,583	6,762	7,003	9,328	9,622	11,297	12,498
	5803.00000 FAR	RMERS INDEPENDENT DITCH	50	0.22%	0	3	1	5	2	8	3	11	4	13	6
	5965.00000 MEA	ADOW ISLAND 1 DITCH	190	0.82%	18	46	39	76	67	107	89	142	124	170	161
	5967.00000 MEA	ADOW ISLAND DITCH	143	0.61%	24	63	52	103	93	147	128	195	166	234	210
	5969.00000 HEV	WES COOK DITCH	146	0.63%	0	12	9	24	17	39	26	56	34	67	44
	7671.00000 PLA	ATTEVILLE DITCH	10	0.04%	0	0	0	0	0	0	0	0	0	0	0
Ditch - 1st Priority; Bull Canal - 1st Priority	7739.00000 LUP	PTON BOTTOM DITCH	1	0.00%	0	0	0	0	0	0	0	0	0	0	0
	7892.00000 HEV	WES COOK DITCH	126	0.54%	5	23	13	43	19	62	24	83	43	100	67
	7948.00000 EVA	ANS NO 2 DITCH	1,476	6.35%	145	343	265	552	446	782	594	1,039	796	1,236	1,038
	7975.00000 BRIG	IGHTON DITCH	375	1.61%	0	37	28	73	54	117	86	167	127	205	175
	8127.00000 FAR	RMERS HIGHLINE CNL	53	0.23%	0	12	10	25	21	41	32	60	45	75	59
	8218.00000 BRA	ANTNER DITCH	32	0.14%	0	2	2	4	3	6	7	8	10	10	11
	8659.00000 LUP	PTON BOTTOM DITCH	136	0.58%	65	111	87	161	128	213	151	270	191	317	237
	8689.00000 PLA	ATTEVILLE DITCH	109	0.47%	55	87	66	121	94	157	111	195	144	226	181
	9075.00000 UNI	ION DITCH	196	0.84%	12	48	35	88	65	128	93	173	136	209	186
	9597.00000 MEA	ADOW ISLAND DITCH	3	0.01%	0	0	0	0	0	0	0	0	0	1	1
	9686.00000 FUL	LTON DITCH	501	2.15%	12	98	68	189	120	292	177	406	271	497	386
	9821.00000 FAR	RMERS INDEPENDENT DITCH	271	1.17%	0	34	28	67	61	107	100	154	132	189	171
	10180.00000 LOV	WER LATHAM DITCH	243	1.05%	48	141	92	238	157	345	212	460	289	558	371
<u> </u>	10184.00000 CHU		1	0%	0	0	0	0	0	0	0	0	0	0	0
German Ditc		ADOW ISLAND DITCH	26	0.11%	0	2	2	4	3	6	5	9	7	10	9
	10480.00000 DEN	NVER CONDUIT NO 20	2	0.01%	0	0	0	0	0	0	0	0	0	0	0
	10546.00000 CHU		1	0%	0	0	0	0	0	0	0	0	0	0	0
	10610.00000 HIG	GHLINE CNL	93	0.40%	87	133	122	187	183	237	213	290	281	332	328
	10901.00000 FUL		15	0.06%	0	7	2	15	3	24	5	34	9	43	17
		NVER CONDUIT NO 20	5	0.02%	0	1	0	1	1	2	1	2	2	3	2
	11338.00000 BRA		68	0.29%	0	3	3	6	7	10	14	15	19	17	23
		WER LATHAM DITCH	156	0.67%	2	32	27	63	57	99	92	140	131	173	171
	11629.00000 UNI		2	0.01%	0	0	0	0	0	0	0	0	0	0	0
		ADOW ISLAND 1 DITCH	15	0.06%	0	0	0	0	0	0	0	0	0	0	0
			2,164	9.31%	63	409	360	769	698	1,187	1,063	1,665	1,435	2,031	1,899
Thorncreek Pipeline; Bull Canal	14423.00000 CHE		106	0.46%	0	13	9	25	17	41	26	59	37	72	53
		NVER CONDUIT NO 20	0	0.00%	0	0	0	0	0	0	0	0	0	0	0
		NVER CONDUIT NO 20	6	0.03%	0	0	0	0	0	0	0	0	0	0	0
	15973.00000 CHE		23	0.10%	75	90	75	108	106	123	121	138	137	151	156
		NVER CONDUIT NO 20	26	0.11%	0	0	0	0	0	0	0	0	0	0	0
	19055.00000 CRC		18	0.08%	0	0	0	0	0	0	1	0	2	0	3
		RLINGTON D RIVER HEADGATE	21	0.09%	0	1	1	2	1	2	2	3	3	4	4
		RLINGTON D RIVER HEADGATE	102	0.44%	0	13	11	25	21	41	33	59	46	71	59
		RLINGTON D RIVER HEADGATE	1,313	5.65%	4	141	132	283	280	453	465	649	673	798	891
	21698.00000 MIL		139 9	0.60%	0	6	6	12	12	20	20 1	29	32	35	46 2
	21709.00000 EVA		115	0.04%	0	2	2	1	4	7	6	9	9	1 11	11
		RLINGTON D RIVER HEADGATE NVER CONDUIT NO 20	20	0.49%	0	0	0	0	0	0	0	0	0	0	0
	22355.00000 HOF		48	0.09%	0	6	6	11	17	18	27	26	37	31	48
			48 15	0.21%	0	4	2	8	5	13	9	19	15	23	23
	25050.21709 EVA	ARSTON RES FROM (SEE 0903501)	33	0.06%	0	6	7	13	18	21	30	30	31	38	39
		ATFIELD RESERVOIR	137	0.14%	5	32	27	61	59	92	92	126	117	153	143
		NVER CONDUIT NO 20	7	0.59%	0	0	0	0	0	0	0	0	0	0	0
		RLINGTON D RIVER HEADGATE	12	0.05%	0	2	2	4	3	6	6	9	7	11	9
	409/4.00000 BUR	NLINGTON D RIVER READGATE	12	0.05%	U	2	2	4	3	ō	O	9	/	11	9

Average Daily Increase in Runoff during South Platte River Call

Meadow Island Ditch

Conclusions

- Development increases impervious area which decreases evaporation/ET and increases runoff
- Surface water yield from undeveloped to developed conditions changes dramatically, more so at higher impervious levels
- Evaporation/ET in model is not sensitive to effects of FSD
 - Depression storage following rainfall
 - Soil moisture availability for ET (upper aquifer zone)
- FSD attenuates peak discharges and extends release hydrographs

Conclusions

- SWMM Model trends follow expected patterns with increasing imperviousness
- FSD primarily affects the timing of runoff (relative to same scenario) without FSD, quantity effects are minor
- Increased flow along the Front Range is coveted and will help water rights holders reduce the supply/demand gap
- Following rainfall events in dry years, water rights holders will benefit from increased flow in subsequent days as a result of FSD

Questions & Comments?

